Pump Up Your Network Server Performance with HP-UX

Paul Comstock
Network Performance Architect
Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice
Purpose of this presentation

• Understand the factors affecting network performance, and what you can do about them
• Survey hardware and software options for HP-UX network servers
• Learn the network configuration and tuning parameters affecting performance
Benchmarking Tools

- SPEC benchmarks (www.specbench.org)
 - SPECweb99: static (70%) and dynamic (30%) HTTP
 - SPECweb99_SSL: w/SSL encryption/decryption
 - SPECweb2004: Under development – new workloads such as banking, e-commerce.

- Netperf (www.netperf.org)
 - Publicly available from HP
 - Measures maximum throughput (Stream) and transactional (Request-Response) performance

- **Your** application benchmark
Performance Tools

• HP-UX commands
 – ifconfig/lanscan/lanadmin
 – ndd
 – netstat (-s)
 – ping (for roundtrip time)
 – top
 – traceroute (for multi-hop networks)

• DSPP Developer Edge tools (www.hp.com)
 – vsar
 – caliper (for Itanium)

• HP-UX Internet Express (software.hp.com)
 – tcpdump

• Glanceplus (managementsoftware.hp.com)
Where is the bottleneck?

Application
Memory
CPU
Bandwidth
Protocol
Sample netstat –s output (partial)

->netstat -s

tcp:

205723900 packets sent
203496218 data packets (1453019982 bytes)
107864 data packets (31506459 bytes) retransmitted
2227182 ack-only packets (439786 delayed)

100885096 packets received
91622713 acks (for 1461278521 bytes)
225582 duplicate acks
14269401 packets (3611105775 bytes) received in-sequence
4 completely duplicate packets (4346 bytes)
435 packets with some dup, data (53746 bytes duped)
5182 out of order packets (3064310 bytes)
0 segments discarded for bad checksum

241398 connection requests
190879 connection accepts
432277 connections established (including accepts)
58200 retransmit timeouts
6977 connections dropped by retransmit timeout
0 connect requests dropped due to full queue
Increase your bandwidth

- Use 1 Gigabit Ethernet NICs instead of 100BT
- Use a NIC with offload features
- Trunk multiple interfaces using *HP Auto Port Aggregation* (APA) (software.hp.com)
- One of today’s CPUs can run a GigE link at full speed
- For scalability, use multiple NICs
- Spread device interrupts using *HP-UX Interrupt Migration* (software.hp.com)
Interrupt Migration – intctl command

intctl

<table>
<thead>
<tr>
<th>H/W Path</th>
<th>class</th>
<th>drv</th>
<th>card</th>
<th>cpu</th>
<th>cpu</th>
<th>intr</th>
<th>intr Card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/0/0/0</td>
<td>lan</td>
<td>btlan</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>L</td>
<td>5</td>
</tr>
<tr>
<td>0/0/1/0</td>
<td>ext_bus</td>
<td>c720</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>L</td>
<td>0</td>
</tr>
<tr>
<td>0/0/2/0</td>
<td>ext_bus</td>
<td>c720</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>0/0/2/1</td>
<td>ext_bus</td>
<td>c720</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>L</td>
<td>2</td>
</tr>
</tbody>
</table>

- Spread high speed network devices between CPUs
- Other devices, such as disks, may also be a concern depending on usage
Checksum Offload
TCP Segmentation Offload
Checksum Offload (CKO)

- Performs inbound and outbound TCP/UDP checksum calculations in hardware, offloading the host CPU
- Available for all HP-UX Gigabit Ethernet hardware
- Currently done for IPv4 only on HP-UX
- Example:

```bash
ifconfig lan3
lan3: flags=1843<UP,BROADCAST,RUNNING,MULTICAST,CKO>
inet 192.6.1.94 netmask fffffff00 broadcast 192.6.1.255
```
TCP Segmentation Offload (TSO)

IS:
- Segmentation of outbound data into IP datagrams in the NIC
- Required TCP/IP stack and NIC support
- Builds on CKO and offloads even more host processing
- Currently IPv4 only on HP-UX
- Uses a large virtual MTU (VMTU) internally, standard MTU on the wire

IS NOT:
- Not a new protocol on the wire
- Not jumbo frames
TSO Software

- **Transport Optional Upgrade Release (TOUR) 2.2**
- **GigEtherEnh-01: Enhancement Software for GigEther-01**
- Both are free from software.hp.com
- Configuration through lanadmin:

  ```
  # lanadmin -x vmtu <ppa>
  Driver/Hardware supports TCP Segmentation Offload. Current VMTU = 32160
  ```
New Offload Technologies

- Even more network processing may be offloaded in the future, as network speeds increase.
- New technologies that provide network offload capability include RDMA, TCP Offload Engine (TOE), ETA, and iSCSI.
- These include TCP and non-TCP based technologies.
- For more information, see break-out session “What Is RDMA?”
How much do offloads boost performance? “The answer is always ‘It depends’.”

A wise computer science instructor
Avoidance Maneuvers
Programming with Sendfile

`sendfile(2)`

NAME

`sendfile()` - send the contents of a file through a socket

SYNOPSIS

```c
#include <sys/socket.h>

sbsize_t sendfile(int s, int fd, off_t offset, bsize_t nbytes, const struct iovec *hdtr1, int flags);
```

- Sendfile avoids copying between file system and network buffers for TCP socket applications that send all or part of a file across the network
- Used by web servers (Zeus, Apache), and ftp on all versions of HP-UX
Network Server Accelerator

- NSA HTTP available for free from software.hp.com
- Uses a memory based cache to handle repetitive HTTP GET requests for static content
- Transparent to web server
- Avoids multiple socket system calls needed to accept a new connection and perform a web transaction
- Performance boost will vary depending on how much of the workload is static web requests.
- Limitations: doesn’t help with dynamic or encrypted content
- For more info see break-out session Accelerating Web Server Performance on HP-UX Using NSA HTTP
Configuration and Tuning
Network Stack Configuration

- A number of network tunables are commonly modified on big servers or in high performance environments.

- `tcphashsz` (system tunable) default 2048; tune up to 64K for large configurations.

- `tcp_conn_request` (ndd tunable) default 4096; good in most cases; be sure to use a large `backlog` when calling `listen(2)`.

- `socket_caching_tcp` (ndd tunable) default 1 (on); use a number greater than 512 based on number of simultaneous TCP connections in use.

- `SO_SENDBUF/SO_RCVBUF` (setsockopt(2)) default 32768; `SO_RCVBUF` sets the TCP receive window; `SO_SENDBUF` helps determine when outbound flow control occurs.
Determining the Receive Buffer

- For long, fat pipes (LFPs), a large receive buffer may be needed to use all of the available bandwidth.
- LFPs have a long round trip time (RTT), and high (fat) bandwidth, so lots of data can be in transit.
- The minimum buffer can be determined by the formula \(r_{cvbuf} = RTT \times BW \)
- RTT can be determined with `ping`, or more accurately on actual TCP connections using `tcpdump`.
- For example, on a 100 Mbit network has a 80 ms round trip time. The \(r_{cvbuf} \) should be \(100,000,000 \text{ b/s} \times .08 \text{ s} = 8 \text{ Mbits} \) (1 MB).
Parameters for Networks with Special Needs

- TCP Selective Acknowledgement (SACK)
 - RFC 2018, uses option fields in TCP header
 - Faster retransmission of multiple gaps in sequence space
 - tcp_sack_enable (ndd) default 2 (don’t initiate SACK)

- tcp_smoothed_rtt (ndd) default 0; can be used for networks with volatile delay behavior such as those with satellite-based and cellular links

- tcp_rexmit_interval_min/tcp_rexmit_interval_max (ndd) default 500 ms/60 sec; not usually changed, as timer-based retransmissions are not that common, and the actual interval is based on RTT measurements

- TCP_NODELAY (setsockopt) default 0; avoids delays in transmission of small segments (Nagle algorithm), but won’t help system-wide performance
Anatomy of a SPECweb99 Result

• How to read a SPECweb disclosure
• Examples of tuning parameters from an actual benchmark

SPECweb99 Result

Hewlett-Packard: HP 9000 rp8420-32 (4 cells)
Zeus Technology Limited: Zeus 4.2r4

SPECweb99 = 23000

Performance

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Conforming Simultaneous Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23000</td>
</tr>
<tr>
<td>2</td>
<td>23000</td>
</tr>
<tr>
<td>3</td>
<td>23000</td>
</tr>
<tr>
<td>Median</td>
<td>23000</td>
</tr>
</tbody>
</table>

References

• Transport Optional Upgrade Release (TOUR) 2.0 FAQ (HP-UX 11i v1, HP-UX 11i v2), docs.hp.com/hpux/netcom
• Network Server Accelerator HTTP Performance White Paper (HP-UX 11i v1), docs.hp.com/hpux/internet
• PCI-X 2 Gigabit Fibre Channel and Gigabit Ethernet Performance Paper (HP-UX 11i v1, HP-UX 11i v2), docs.hp.com/hpux/netcom
• PCI Gigabit Ethernet Performance on HP Server rp7410 (HP-UX 11i v1), docs.hp.com/hpux/netcom
• Using APA to Build a Screaming Fast Network Server Connection, docs.hp.com/hpux/netcom
Co-produced by:

interex
shared knowledge • shared power

encompass
AN HP USER GROUP

RECOMMENDED TRAINING VENUE FOR THE
HP Certified Professional